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ABSTRACT 

Let al < a2 < ... be an infinite sequence of integers. Denotebyg(n) the 
number of solutions of n = at...aj. Ifg(n)>0 for a sequence n of positive 
upper density then lira sup g(n) = cx~. 

Let a ,  < a2 < "" be an infinite sequence of  integers and denote by f ( n )  the 
number of  solutions of  n = a~ + a j .  An old conjecture of  T u r i n  and myself states 

that if f ( n )  > 0 for all n > no then lim sup, = ~ f ( n )  = m. A stronger conjecture 
(which nevertheless might be easier to attack) states that if  a t  < ck  z then 

l imsup,=~of(n)  = m. Both these conjectures seem rather deep. I could only 

prove that ak < ck z implies that the sums at + aj can not all be different [6] 

(c, c t , c2, . . ,  denote absolute constants). 

In view of  the difficulty of  these conjectures it is perhaps surprising that the 

multiplicative analogues of  these conjectures though definitely non-trivial are not 

too hard to settle. In fact I shall prove the following. 

THEOREM 1. Let  b~ < b 2 < ... be an infinite sequence o f  integers. Denote by  

g(n) the number  of  solutions of  n = bib j . Then  

g(n) > 0 for all n > no 

l imsup g(n) = m 
n=OD 

B(x) = E 1 
bt_~x 

A well known theorem of Raikov [5"] states that (1) implies that for infinitely 
many  x 

(3) B(x) > clx/(log x) ~/2 

Thus to prove Theorem 1 it will suffice to show that if (3) holds for infinitely 

many x then (2) follows. In fact I shall prove stronger results. 

Denote by ut(n ) the smallest integer so that if b: < --. < bt < n, t = u~(n) is any 
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sequence of integers then for some m, g(m) > I. Theorem 1 would follow from 
ul(n) = 0(n/(log n)t/2). 

THEOREM 2. 

U2k(n) < e2 l o ~ n  log log n) k+l 

In a previous paper I [1] proved that 

(4) II(n) + c3nal4/(logn) 3/2 < u2(n) < H(n) + c4 ha~4. 

II(n) denotes the number of primes not exceeding n and IIk(n ) denotes the 
number of integers m > n the number of distinct prime factors of which does 
not exceed k. The right side of  (4) can in fact be stregthened to 

(5) u2(n ) < II(n) + csna/4/(log n) 3/2 

I do not prove (5) in this paper. 
(4) and (5) suggest the possibility of  obtaining an asymptotic formula with an 

error term for ut(n) also for l > 2. I am going to outline the proof of 

THEOREM 3. Let  2 k- 1 < l < 2 k. Then 

nilog log n) k- t 
ul(n ) = (1 + o(1) (k - 1)l logn " 

Finally I am going to prove the following 

THEOREM 4. To every c and l there is an n o = no(C, l) so that i f  n > no and 
b I < ... < b s < n is such that the number N(n)  of  integers t < n which can be 
written in the f o rm  bib j is greater than en  then there is an m with g(m) > I. 

Theorem 4 clearly implies Theorem 1, but not Theorems 2 and 3. 
Our main tool will be the following 

LEMMA. Let $1 , . . . ,  Sr be r sets of  integers, S~ has N t elements (N  1 > ... > N,)  
x (0, I < j < N , .  Let  u s < u 2 < . . . < u t  be a sequence of  integers where each 
u j ,  1 ~ j < t is of  the formI-[.~=l x t° ( i .e ,  every u can be written as the product of  r 

integers one f r o m  each Si). Then i f  

3 ' :  
(6) t > ~ 1-IN, 

Nlr 2r- I  i=1 

there is an m so that the number of  solutions of  

m = UjIUj2 
IS at least 2"-2. 

To each integer of  S~, 1 < i < r we make correspond a vertex and to each 
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uj = l-i:= 1 x~ °, we make correspond the r-tuple { xji}! 0 1 <_ i <- r. Thus we obtain 
an r-Graph [2] G ( ' ) ( ~ = I N ~ ; t )  and if t satisfies (6) then by the corollary of  
Theorem 1 of [2] there are integers xt~ ° ,  x~ ° in S~, 1 _< i -< r so that all the 2' 
integers 

rCIx~O, ; t = l o r 2  
t = l  

are u's. Thus I-[~=l r,.(o,.~o has at least 2 ' - I  solutions, which completes ~ 1  "~'2 ~ U j l U j 2  

the proof  of  the Lemma. 
Let now b~ < ... < bs _-< n be a sequence of integers for which g ( m )  < 2 k for 

all m. To prove Theorem 2 we have to show 

c2n(log log n) k+ 1 
(7) s < 

log n 

To prove (7)we split the b's into two classes. 
In the first class are the b's which can not be written in the form (exp z = e ~) 

k+l  
(8) YI e~, ei > exp ((log log n)2). 

/=1 

Denote these b's by b] , . . . ,  b,', and write bi = uiv~ where all prime factors of  ul 
are not exceeding exp ((loglog n)2), and all prime factors of vi are greater than 
exp ((log log n)2). By (8) v i has at most k prime factors (for otherwise v i and there- 
fore b~ = uiv i would be of the form (8). Further a simple argument shows that 
u i < exp ((2k + 2)(log log n) 2) (for otherwise u+ and therefore b[ would be of the 
form (8)). But then clearly 

(9) sl < flk =< ]~' rIk 

where the dash in the summation indicates that 1 =< t < exp((2k + 2) (tog log n)2). 
Now by a theorem of Landau [4] 

. . . .  x (log logx) k- 1 
0 0 )  n k ( x )  = (1 + . 

Thus from (9) and (10) we obtain by a simple computation 

(11) sl < c6n(log logn) k+l / logn.  

Denote now by b " l , " "  b"s2 the b's of  the form (8). I f  c2 > c6 and (7) would be 
false, we would have from (11) 

. n (log log n) k+ 1 
(12) s2 > (c2 - % )  1 - ~  " 
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Put for 1 < j < s2 (we write e~ ° instead of  e~ )) 

f k+* ~.(o e~ 0 21+~,, 
b7 = rle.~ 0 , 2 '  < < ., 

(13) t = 1 
log n 

(Iog log n) 2 < 2(o < log 2" 

To each bj' we make correspond the (k + 1)-tuple 

(14) {2J°}, 1 < i < k + 1. 

By (13) the number of possible choices of  the (k + 1)-tuples (14) is for n > n o 
less than (logn/log2) k+l. Thus by (12) there is a (k+  1)-tuple (21,. . . ,2k+1) 
which corresponds to more than n/(log n)k+ 3b,,,,s say b~' ,... ,  b', 

(15) s 3 > n/(log n) k+ 3 
Now we apply our Lemma with r = k + 1. The sets S, are the integers in (2 a*, 

2t+x'), thus Ni = 2 a', and by b~" < n we have 

k + l  zk+l '~1 
1"I N t £  2 i=i < n  
l = l  

By (15)and 2t >-(loglogn) 2 a simple computation shows that sa = t clearly 
satisfies (6). Thus by our Lemma there is an m for which m = b~: bl~ has at least 2 k 
solutions, which proves Theorems 1 and 2. 

C O R O L L A R Y .  Let bl < .." be an infinitesequence of  integers so that every n > no 
can be written as the product of k or fewer b's. Then l imsup,=~ g(n) = oo. 

Raikov's theorem implies that for infinitely many x B(x) > cx/(logx) 11~. Thus 
the corollary follows from Theorem 2. 

Now we prove Theorem 4. We shall show that there is an e = e(c) > 0 so that 
to every T there is an no = no(T, e) for which, n > no, N ( n ) >  cn implies that 
there is an L > T satisfying. 

(16) B(L) > 8L/(logL) t12 . 

(16) by Theorem 2 implies Theorem 4. 
(16) implies Raikov's theorem with e = ca. Our proof of  (16) will not use 

Raikov's theorem but we will use his method. 
We evidently have 

(17) c n < N ( n ) <  ~. B ( - ~ ) =  ~ , +  ~ 2 +  ~a  

where in ~1 bl < T, in ~2 T < b~ < niT  and in ~,a bi ~_ niT. Clearly 
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E3 and each (19) follows from the fact that there are most B(n) summands in 
summand is < T. If  (16) does not hold then for every L > T 

(20) B(L) < ~L/(IogL)1/2. 

Thus from (18), (19) and (20) we have for n > n o (T, e) 

(21) E1 + E3 < 2TB(n) < 2Ten/(logn) a/2 < cn/2. 

From (20) we further have 

(22) E2 < E ~n/b i log 
T<bi<n/r -~i 

Now from (20) we have by a simple argument that for b i > T, b i > i(logi) 1/2. 
Thus from (22) we obtain by a simple computation 

(23) E2 < en ~ 1 c ( i=2 i(logi) 1/2 log 

if e is sufficiently small. (21) and (23) contradicts (17), thus (20) can not hold 
for all L > T (or (16) holds for some L > T) which completes the proof of 
Theorem 4. 

The following problem can now be put: Assume that (1) holds. What can 
be said about 

F(n) = max g(m) . 
mN_n 

I can prove that there are two constants el and e2 so that (1) implies for n > no 

(24) F(n) > (log n) ~. 

But there exists a sequence bl < ".. for which (1) is satisfied and for all n 

(25) F(n) < (log n) "z. 

In this paper I do not give the proof of (24) and (25) but only remark that the 
proof of (24) is a refinement of the proof of Theorem 2 and the proof of (25) 
uses probabilistic arguments similar to the ones used in [3]. 

Now we outline the proof of Theorem 3. By (10) Theorem 3 implies that 
for 2 k-1 < l <<_ 2 k ut(n) = (1 + o(1))l-lk(n ). 

First we show 

(26) uzk -, + l(n) > (1 + o(1)) FI R_ 1 (n) = (1 + o(1)) n (log log n) k- 1 
(k - 1)l 
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Denote by v] k) < ... < "  tk~ < "t~ = n the set of integers of  the form 

k 
n 

- - <  1--I Pi < n, (27) log n i = 1 
P i + I  < P~/k2 • , P k > ( l o g n )  2. 

It is a simple exercise in analytic number theory to prove by induction with 

repect to k that 
n (log log n) k- 1 

(28) t k = (1 + o(1)) (k - 1)!log n 

We leave the proof  of (28) to the reader. To prove (26) we now show that for 

every m the number of  solutions of 

(29) v(k). ~k) 
J l  VJz = m 

is at most 2 k- ~. Observe that if (29) is solvable we must have 

k 

(30) m = H piq, 
i = l  

where k I-L = ~ P~ and I-L k ~ q~ both satisfy (27). Every solution of (29) must be of 

the form 

k k 
(31) . (k) = I 1  x / ' ,  - -  I-I  x/2 , . . .  > x 2  > . . .  > 

i = 1  / = 1  

rig x(l)and where the x} ~) and x} 2~ are the p's and q's and x x, =~ , I-Ik= 1 x} 2) satisfy (27). 

x~ ~) and x~ z) we will call the i-th coordinate of v~k]respectively .~j~.~k) Clearly p~ and 

q~ must be the first coordinates of any possible solution of (29). To see this observe 

that (27) implies 
k 

I-I piqi < n a/2 < n/log n 
i = 2  

and hence (27) can be satisfied only if the first coordinates are Px and q t .  Assume 
that the first i - 1 coordinates of a solution • (k)^~- (29) has already been chosen. vii u t  

I claim that there are only two possible choices for the i-th coordinate o f"  (k) To u j l  • 

show this it will suffice to prove that only one p and only one q can possibly 
occur as the i-th coordinate of " (k)If this is not so we assume that both U j l  • 

I t  t t v j = x l . . . x ~ _ l p u x ~ + t . . . x k  and v j = x l . . . x i _ l p v x i + l . . . x  k would be solution 

of  (29). But then clearly 
tl 

r > X l . . . X i _ l P u ,  O j < X  l ' . . X i _ I p  k. (32) vj = 

Hence by (27) and (32) 

, ,, k pul/2 > log n > vy/vj > Pu/Pv > log n 

an evident contradiction. 
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The fact that the first coordinates of every solution of (29) must be p~ and ql 
and the fact that for i > 1 there are most two choices for the i-th coordinate of 
v(k) immediately implies that (29) has at most 2 k- 1 solutions. Thus by (28), (26) h 
is proved. 

To complete the proof of Theorem 3 we have to show 

(33) u2~(n) < (1 + o(1)) 
n(log log n) k- i 
(k - 1) ! log n 

To prove (33) it suffices to show that to every e > 0 there is an no = no(e, k) 
so that if 

(34) b l < . . . < b  t, 1 > ( 1 + ~ )  n(l°gl°gn)k-X 
( k -  l ) ! logn 

is any sequence of integers then there is an m with g(m) > 2 k. We will only outline 
the fairly complicated proof. 

Assume that there is a sequence satisfying (34) for which g(m) < 2 k for all m. 
We shall show that this assumption leads to a contradiction. We split the b's 
into five classes. In the first class are the b's which can be written in the form 

k+l  

(35) I-[e~, e ~ > ( l o g n f  ~, l < i _ < k + l  
i = l  

where Ck is a sufficiently large absolute constant. Using (35) and our Lemma in 
the same way as we used (8) and our Lemma in the proof of Theorem 2 we obtain 
that g(m) < 2 k for all m implies that the number of integers of the first class is 
0((n/(log n)2)). The integers of the second class have at most k - 2 prime factors 
> (log n) ~ and they can not be written in the form (35). In the asme way as we 
proved (11) we can show that the number of integers of the second class is less 
than (cn (log log n)k-2)/log n). The integers which do not belong to the first two 
classes can be written in the form 

k-1  

(36) t 1-I pi, pi > (log n) c~, 1 .~ i < k -  1 
i=1 

and where t can not be written as the product of two integers > (log n) ck (for 
otherwise our number would be of the first class). In the third class are the 
integers where all prime factors of t are less than (log n) ~' where r/1 = t/l(e ) 
is sufficiently small. We can assume t < (log n)4Ckfor otherwise t would be the 
product of two integers > (log n) ~. Thus the number of integers of the third 
class is at most ~ '  17 k_ l((n/t)) where the dash indicates that t < (log n) 4c~and all 
prime factors of t are less than (log n) ~1. By a simple computation we have from 
(10) and t/1 = r/l( 0 
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( t ) 1 e n(loglogn) k-I (37) ]~'Hk_l = (1 + o(1) n(l°gl°gn)k-2 ~'  < - -  
(k - 2)!logn 10 (-k~ 

Thus by (37) the number of b's which belong to the first three classes is less than 
(e/2)(n(loglog n) k- l ) / (k-  1)! log n) and hence by (34) there are at least 

n (log log n)  k -  1 
(38) (1 + -~-) (-~-~-~.Vl~n 

b's which do not belong to the first three classes. These b's can by (36) all be written 
in the form (Pk is the greatest prime factor of  t) 

k t 
(39) t' 1-[ Pi, Pi > (l°gn) c~, 1 < i < k - 1, Pk > (logn) "', t' = - - .  

i = t  Pk 

In the fourth class are the b's for which 

(40) t' < (log n) .2 where ~/2 =/72(?]1) 

is sufficiently small. We shall now show that our assumption g(m)< 2 k for all 
m implies that the number N of integers of the fourth class is less than 

(41) 
N < ( 1 + 4 )  n(l°gl°gn)k-t 

. 

(42) 

We evidently have 
In ]~" t '~ t" )  

If  C is any set of integers N(C) will denote the number of integers of  this class. 
Let b~ be any integer of the fourth class, b~ can be written (uniquely) in the form 

(39) and by It, we denote the set of integers hilt'. The integers in I t, have all k 
prime factors. If  (41) does not hold then (in ~ '  t' < (log n) ~2) 

( 4 )  n(loglogn) k-I 
N = E' N(t,,) ¢ 1 + 

t" 

(It, n It. is the set of  integers belonging to both I,, and It. 

f 
J v~i,N(It,) < Hk(n) + ~t",e, N(It, N It,,) < 

(43) [ "O n x21/2 N( I t, t~ It,. ). IIk(n ) + ( 1  g ) max 
1", t "t 

From (42), (43) and (10) we obtain that for n > no 
e n (log log n) k- 1 n 

(44) max N(It, h i t . )  > 1--6 (k - 1)!(logn)t+2,~ > (logn)t+3.~ 
1% t" 

Hence there are values of t '  and t" say t (~) and t (2)(tin ¢ t (2)) for which(44)holds. 
We are going to prove that (44) implies that there are primes p[1), p[2), 1 < i < k 
so that all the 2 k products 
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(45) I-I P~), 2 = 1 or 2 
/=1 

belong to It, (3 Its. But then all the 2 k+ ~ integers. 
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k 

H 
i=1 

2 = 1 o r 2  

are b's of  the fourth class. Thus for m = t tl)tt2)I-[~k= t Pi(1)Pi ~2) we have g(m) > 2 k, 
which contradicts our assumption, hence (41) is proved. 

Thus we only have to show that if the primes p~X), 1 < i < k with the property 
(45) do not exist then (44) can not hold. This will be accomplished by arguments 
similar to but more complicated than the ones used in the proof of Theorem 2. 

We will only outline the argument. Denote by 

( 4 6 )  r 1 < . . .  < r , ,  l > n/(logn) 1+3~2 

the integers belonging to It, n I~2. By (39) each r i is the product of  k primes each 
greater than (log n) n'. As in the proof of Theorem 2 we make correspond to 
rj = I-I k = 1 pt the k-tuple 

(47) ( ;q , ' " ,2k) ,  2 1 > ' " > 2 k ,  2 ~ ' < p ~ < 2  l+a' 

Denote by N(21,-.., 2k) the number of r's corresponding to the k-tuple (2t,  ..., 2k). 
We shall show that 

xk=12i ('),1 (48) N(21, "",2k) ~_ 2 [-I2~ ~ 12--~k]2~+ 1Q 

By the prime number theorem the number of primes p~ satisfying (47) is 
(1 + o(1))(2a'/2~1og2). Now we apply our Lemma with r = k and 

2 ~ 2~k/2, 2~k 21__ (49) N, = (1 + o(1)) ~ > > (log n) "~. 

We obtain by the Lemma by a simple argument that if 

(50) N(21 , "",2k) > (1 + 1 , (1og2)-k 2-2k/2~> 

) 2Zi=t2~ 1-I 2~ -1 2-ak/2~*' 
' ,1=1 

then primes pt(l~ p t2~ 1 < i < k exist so that the numbers (45) are all r,'s and we 
have assumed that such primes do not exist. Thus (50) is false or (48) is proved. 

(48) clearly implies (the dash indicates that 2 x~k--x2~ __6 n and 24~> ½(log n) ~t 
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By an elementary but somewhat lengthy argument (using elementary inequalities) 
which we supress we obtain that (51) implies 

(52) 1 < n/(log n) 1 + 3~2 

if f]2 = ~2(/'/1) is sufficiently small. (52) contradicts (46) and this contradiction 
proves that (44) can not hold, which finally proves (41). 

The remaining b's are in the fifth class. By (41) these integers can be written 
in the form 

k 
(53) t ' l-[ Pi, P />  (log n) ok, 1 _< i < k - 1, Pk > (log n) ~', (log n) ~ < t' < (log n) 4ck 

/=1 
k (if t '  > (log n) 4~ then a simple argument would show that our t ' I~/= 1 P/ can be 

written in the form (35) and hence belongs to the first class). By (38) and (41) 
there are at least 

e n(loglogn) k-I n 
(54) -4- (k - 1)!log n > log---n 

b's of the fifth class. To each such b we make correspond a (k + 1)-tuple 

(21, "",2k+1), 21 > "'" > 2k+1 satisfying 

24` <p~<21+4 ' ,  l<i<k,  2 4 ~ + ' < t < 2  t+ak÷~ 

(55) 
24  ̀ > ½(log n) % 1 < i < k , ½ (log n) ~2 < < (log n) 4ok, 

'vk+l ] 
2 ' ' /= 1 "~* < n .  

Denote by N1 (21,'",2k+1) the number of b's of the fifth class belonging to 
to (21, ..., 2k+1). By (54) we have 

n 
(56) ]~' Nl(2X, "-., 2k+ 1) > 1og------~ 

where the dash indicates that 

zk+12 2a '> ½(logn) n', 1 _< i _< k, ½(log n) ~2 < 24k + ' < (logn) 4c~ (57) 2 i=1 i < n ,  

Now we prove 
y k+t 2 / k \ 

(58) N1(21, '" ,2k+1)~_~2 i = l  i t  t--I-I121)-X 2--4k+,2k+2 

As in the proof of (48) we obtain that if (58) would not hold then there would be 
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primesp~ a), 1 < i < k, 2 = 1 or 2 and two integers t (1) and t(2)so that the 2 k+l 

integers 

k 

ta H (a) Pi , 2 = 1 or  2 
i = l  

all would be b 's  of  the fifth class, but  as we have already seen this implies 
t(1)t(2)lqk _O)_(2)~ Thus (58) is proved. Now we obtain g(m) > 2 k (for m = 11 i = t Pi vi :- 

f rom (58) by a simple computa t ion  the details of  which we supress that (the dash 

indicates that (57) is satisfied) •k+l ] /k+l ) (l~gH) 
(59) ~ '  N l ( 2 1 , ' " , ; t ~ + l )  < 2 " ~ = t ' ~ i |  1-1 21 -1 2-au+,/2k+2 = o  . 

\ i = 1  

(59) contradicts (56) and this contradiction proves (34) and also (33) and hence 

completes the p roo f  o f  Theorem 3. 
Let 2 k- 1 < l < 2 k. Theorem 3 could be sharpened to 

n ( l o g l o g n )  k-1 ( n )  
ul(n) = (k - 1) ! log n + 0 (log nff 1 + c 

where c > 0 is a suitable positive constant.  But at present I can not prove for l > 2 

a result as sharp as (4) and (5). 
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